

# **ENVIRONMENTAL PRODUCT DECLARATION**

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:

Program operator:

Publisher:

Declaration number:
Registration number:

ECO Platform reference number:

Issue date: Valid to:

Norgips Norge AS

The Norwegian EPD Foundation The Norwegian EPD Foundation

NEPD-2140-966-EN NEPD-2140-966-EN

-

20.04.2020 20.04.2025

# Norgips Fireboard/Brann type DF (BRN)

Norgips Norge AS

www.epd-norge.no







## **General information Product:** Owner of the declaration: Norgips Norge AS Norgips Fireboard/Brann type DF (BRN) Contact person: Trond Even Fagerli Phone: +47 46 95 32 15 e-mail: trond.fagerli @norgips.com **Program operator:** Manufacturer: The Norwegian EPD Foundation Norgips Norge AS Post Box 5250 Majorstuen, 0303 Oslo Postboks 655 Strømsø Norway 3003 Drammen Phone: +47 97722020 e-mail: post@epd-norge.no **Declaration number:** Place of production: NEPD-2140-966-EN Svelvik, Norway **ECO Platform reference number: Management system:** NS-EN ISO 14001:2015 This declaration is based on Product Category Rules: **Organisation no:** CEN Standard EN 15804 serves as core PCR NO 986034757 MVA NPCR010 v3.0 Building boards (04/2019). Statement of liability: Issue date: The owner of the declaration shall be liable for the 20.04.2020 underlying information and evidence. EPD Norway shall not be liable with respect to manufacturerinformation, life cycle assessment data and evidences. Valid to: 20.04.2025 **Declared unit:** Year of study: 2019 **Comparability: Declared unit with option:** 1 m2 of installed gypsum board, including waste treatment at EPD of construction products may not be comparable if they end of life. not comply with EN 15804 and seen in a building context. Functional unit: The EPD has been worked out by: Clara Valente & Lars G. F. Tellnes Clara Valente **Ostfoldforskning** LASH Clerce **Verification:** The CEN Norm EN 15804 serves as the core PCR. Independent verification of the declaration and data, according to ISO14025:2010 Approved Third party verifier: Ole M. W. Tresen Ole M. K. Iversen Managing Director of EPD-Norway (Independent verifier approved by EPD Norway)



## **Product**

## **Product description:**

Gypsum plasterboard composed of a plaster core with increased fire resistance. The front and back paper liners are overlapped and glued together on the backside of the board. The board is classified for fire protecting encasing of load bearing steel beams and columns. For use in all types of buildings in walls and ceilings with higher fire protection requirements

#### **Technical data:**

The product is in compliance with EN 520

Weight:  $12,5 \text{ kg/m}^2 \pm 2 \%$ , Thickness:  $15 \text{ mm} \pm 0.5 \text{ mm}$ 

For more information from the product data sheet, see

www.norgips.no / www.norgips.se

#### **Product specification:**

Gypsum board is produced in various width and length, but at the same thickness and it is therefore no variations of the product per square meter.

| Materials                 | kg    | %       |
|---------------------------|-------|---------|
| Gypsum                    | 9.865 | 78.89 % |
| Cardboard                 | 0.389 | 3.11 %  |
| Glass fibre reinforcement | 0.025 | 0.20 %  |
| Additives                 | 0.596 | 4.77 %  |
| Water                     | 1.630 | 13.03 % |
| Total for product         | 12.50 | 100 %   |
| Plastic packaging         | 0.003 |         |
| Wood packaging            | 0.015 |         |
| Wooden pallet             | 0.080 |         |
| Total product + packaging | 12.60 |         |

#### Market:

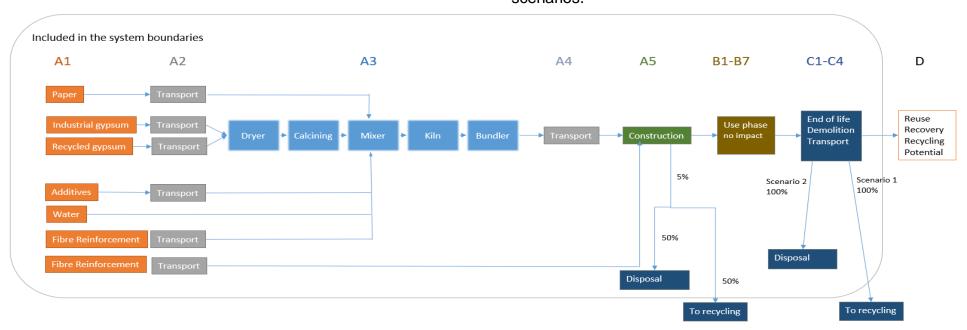
Norway and Sweden

#### Reference service life, product:

60

## Reference service life, building:

60


## LCA: Calculation rules

#### **Declared unit:**

1 m2 of installed gypsum board, including waste treatment at end of life.

## System boundary:

Flow chart for the complete life cycle (A1-C4) with system boundaries are shown in the figure below. Modul D is also declared outsitde the life cycle with material and energy substitution from net recovery and is further explained in the scenarios.



Industrial gypsum and recycled gypsum are mixed and dried before the mixture is calcined. The calcined gypsum is transferred to the mixer where water and additives are added. The slurry is distributed to a plasterboard liner where the edges are folded and a new layer of plasterboard liner is glued on to form a sandwich. The board line is continuous transferred along the production line, cut to suitable lengths and dried in a kiln. The dried boards are cut to the correct lengths and stacked in pallets.



### Data quality:

The manufactring data for Norgips was collected in 2019 and represents an average for 2018. Other data are from ecoinvent v3.5, released in 2018, but with some changes to improve representativeness.

#### **Cut-off criteria:**

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances.

#### Allocation:

The allocation is made in accordance with the provisions of EN 15804. Energy use is sub-divided between different process and allocated with physical relationships to the different types of boards. Packaging, water use and waste production is allocated equally among all products through mass allocation. Effects of primary production of recycled materials allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

## Calculation of biogenic carbon:

Uptake and emissions of biogenic carbon are calculated according to EN 16485:2014. This is based on the modularity principle in EN 15804:2012, where the emissions shall be accounted in the module where it ocurs. Net contributrion of biogenic carbon is calculated for each module on page 8.

## LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

All products are either first transported to a building mechant or directly to a building site. It is included a scenario for directly to building site and with a distance of 360 km.

Transport from production place to user (A4)

| Туре  | Capacity utilisation (incl. return) % | Type of vehicle |     | Fuel/Energy consumption | Unit  |
|-------|---------------------------------------|-----------------|-----|-------------------------|-------|
| Truck | 55                                    | EURO6           | 360 |                         | l/tkm |
| Truck |                                       |                 |     |                         |       |

It is assumed 0.0012 MJ of electricity use in assembly and 5 % wastage of the product, in addition to waste management of the packaging. Jointing compound and tape are also added to smooth the surface between boards.

There are no LCA-related environmental impacts during use.

## Assembly (A5)

|                                       | Unit  | Value  |
|---------------------------------------|-------|--------|
| Auxiliary - jointing tape             | kg    | 0.0042 |
| Auxiliary - jointing compound         | kg    | 0.33   |
| Water consumption                     | $m^3$ | 0      |
| Electricity consumption               | MJ    | 0.0012 |
| Other energy carriers                 | MJ    | 0      |
| Material loss                         | kg    | 0.63   |
| Output materials from waste treatment | kg    | 0.098  |
| Dust in the air                       | ka    | 0      |

## Use (B1)

|                               | Unit | Value |
|-------------------------------|------|-------|
| Relevant emissions during use | kg   | 0     |
|                               |      |       |
|                               |      |       |
|                               |      |       |
|                               |      |       |
|                               |      |       |
|                               |      |       |
|                               |      |       |



It is assumed no need for maintenance nor repair under a normal scenario.

Maintenance (B2)/Repair (B3)

|                         | Unit  | Value |
|-------------------------|-------|-------|
| Maintenance cycle*      |       |       |
| Auxiliary               | kg    | 0     |
| Other resources         | kg    | 0     |
| Water consumption       | $m^3$ | 0     |
| Electricity consumption | kWh   | 0     |
| Other energy carriers   | MJ    | 0     |
| Material loss           | kg    | 0     |

It is assumed no need for operational energy nor water under a normal scenario.

Operational energy (B6) and water consumption (B7)

|                           | Unit  | Value |
|---------------------------|-------|-------|
| Water consumption         | $m^3$ | 0     |
| Electricity consumption   | kWh   | 0     |
| Other energy carriers     | MJ    | 0     |
| Power output of equipment | kW    | 0     |
|                           |       |       |
|                           |       |       |

It is assumed no need for replacement nor refurbishment under a normal scenario.

## Replacement (B4)/Refurbishment (B5)

|                           | Unit | Value |
|---------------------------|------|-------|
| Replacement cycle*        |      |       |
| Electricity consumption   | kWh  | 0     |
| Replacement of worn parts | 0    | 0     |
|                           |      |       |
|                           |      |       |

\* Number or RSL (Reference Service Life)

The product is collected as gypsum. The most common treatment is recycling and landfilling. Both scenarios are declared as separate 100 % scenarios.

End of Life (C1, C3, C4)

|                                       | Unit | Value |
|---------------------------------------|------|-------|
| Collected as gypsum waste             | kg   | 12.5  |
| Collected as mixed construction waste | kg   | 0.0   |
| Reuse                                 | kg   | 0.0   |
| Recycling - scenario 1                | kg   | 12.5  |
| Energy recovery                       | kg   | 0.0   |
| To landfill - scenario 2              | kg   | 12.5  |

The transport of gypsum waste is assumed to be 50 km for landfilling scenario and 300 km for recycling.

**Transport to waste processing (C2)** 

| Туре                   | Capacity utilisation (incl. return) % | Type of vehicle | Distance km | Fuel/Energy consumption | Unit  |
|------------------------|---------------------------------------|-----------------|-------------|-------------------------|-------|
| Scenario 1 - recycling |                                       |                 |             |                         |       |
| Truck                  |                                       | Unspecified     | 300         | 0.027                   | l/tkm |
| Scenario 2 - landfill  |                                       |                 |             |                         |       |
| Truck                  |                                       | Unspecified     | 50          | 0.027                   | l/tkm |

The benefits and loads beyond system boundaries are calculated from the net flows shown in the tables below. The exported energy from municipal incineration was calculated from amounts in 2015 and that substitutes Norwegian electricity mix and district heating mix. The recycling output of gypsum is assumed at 90 % of the weight of the product and the raw material substitution is modelled with mined gypsum. The net output flow of gypsym is however negative and will give a net load in module D.

Scenario 1 - Recycling - Benefits and loads beyond the system boundaries (D)

| - y - t - t - t - t - t - t - t - t - t |      |       |
|-----------------------------------------|------|-------|
|                                         | Unit | Value |
| Substitution of electric energy         | MJ   | 0.6   |
| Substitution of thermal energy          | MJ   | 4.0   |
| Substitution of raw materials           | kg   | -0.8  |
| Substitution of fuels                   | kg   | 0.0   |
| Substitution of products                | kg   | 0.0   |

Scenario 2 - Landfilling - Benefits and loads beyond the system boundaries (D)

|                                 | Unit | Value  |
|---------------------------------|------|--------|
| Substitution of electric energy | MJ   | 0      |
| Substitution of thermal energy  | MJ   | 0      |
| Substitution of raw materials   | kg   | -12.30 |
| Substitution of fuels           | kg   | 0      |
| Substitution of products        | kg   | 0      |



## **LCA: Results**

The results for global warming of the different modules have a large contribution from uptake and emission of biogenic carbon. The net contribution of biogenic carbon to each module is shown on page 8.

| Syste         | System boundaries (X=included, MND= module not declared, MNR=module not relevant) |               |               |          |     |                             |        |             |               |                        |                       |                            |           |                  |                                    |                                        |
|---------------|-----------------------------------------------------------------------------------|---------------|---------------|----------|-----|-----------------------------|--------|-------------|---------------|------------------------|-----------------------|----------------------------|-----------|------------------|------------------------------------|----------------------------------------|
| Pro           | Product stage                                                                     |               | Assemby stage |          |     | Use stage End of life stage |        |             |               |                        |                       |                            |           |                  | Beyond the<br>system<br>boundaries |                                        |
| Raw materials | Transport                                                                         | Manufacturing | Transport     | Assembly | Use | Maintenance                 | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | De-construction demolition | Transport | Waste processing | Disposal                           | Reuse-Recovery-<br>Recycling-potential |
| A1            | A2                                                                                | А3            | A4            | A5       | B1  | B2                          | В3     | B4          | B5            | В6                     | B7                    | C1                         | C2        | СЗ               | C4                                 | D                                      |
| Х             | Х                                                                                 | Х             | Х             | Х        | Х   | Х                           | Х      | Х           | Х             | Х                      | Х                     | Х                          | Х         | Х                | Х                                  | Х                                      |

| Environme | nvironmental impact                   |          |          |          |          |          |  |  |  |  |  |  |
|-----------|---------------------------------------|----------|----------|----------|----------|----------|--|--|--|--|--|--|
| Parameter | Unit                                  | A1-A3    | A4       | A5       | B1-B7    | C1       |  |  |  |  |  |  |
| GWP       | kg CO <sub>2</sub> -eqv               | 2.51E+00 | 3.72E-01 | 4.53E-01 | 0.00E+00 | 1.07E-05 |  |  |  |  |  |  |
| ODP       | kg CFC11-eqv                          | 2.61E-07 | 7.45E-08 | 2.50E-08 | 0.00E+00 | 9.97E-13 |  |  |  |  |  |  |
| POCP      | kg C <sub>2</sub> H <sub>4</sub> -eqv | 4.80E-04 | 7.01E-05 | 4.79E-04 | 0.00E+00 | 2.21E-09 |  |  |  |  |  |  |
| AP        | kg SO <sub>2</sub> -eqv               | 9.50E-03 | 1.22E-03 | 1.13E-02 | 0.00E+00 | 4.81E-08 |  |  |  |  |  |  |
| EP        | kg PO <sub>4</sub> 3eqv               | 1.88E-03 | 2.69E-04 | 3.21E-04 | 0.00E+00 | 1.20E-08 |  |  |  |  |  |  |
| ADPM      | kg Sb-eqv                             | 4.35E-06 | 1.54E-06 | 8.94E-07 | 0.00E+00 | 1.67E-10 |  |  |  |  |  |  |
| ADPE      | MJ                                    | 5.06E+01 | 6.30E+00 | 8.14E+00 | 0.00E+00 | 1.04E-04 |  |  |  |  |  |  |

| Environme | ntal impact                           | Scenario 1 - Recycling |          |          |           | Scenario 2 - Landfill |          |          |          |  |
|-----------|---------------------------------------|------------------------|----------|----------|-----------|-----------------------|----------|----------|----------|--|
| Parameter | Unit                                  | C2                     | C3       | C4       | D         | C2                    | C3       | C4       | D        |  |
| GWP       | kg CO <sub>2</sub> -eqv               | 4.83E-01               | 6.84E-01 | 1.12E-02 | -3.79E-02 | 8.05E-02              | 5.03E-02 | 1.27E+00 | 3.38E-02 |  |
| ODP       | kg CFC11-eqv                          | 9.04E-08               | 1.17E-08 | 2.66E-09 | -3.71E-09 | 1.51E-08              | 8.93E-09 | 3.96E-08 | 4.34E-09 |  |
| POCP      | kg C <sub>2</sub> H <sub>4</sub> -eqv | 7.94E-05               | 1.48E-05 | 1.02E-03 | -3.04E-05 | 1.32E-05              | 1.03E-05 | 1.48E-02 | 8.54E-06 |  |
| AP        | kg SO <sub>2</sub> -eqv               | 1.57E-03               | 4.94E-04 | 2.54E-02 | -1.83E-04 | 2.62E-04              | 3.76E-04 | 3.67E-01 | 4.63E-04 |  |
| EP        | kg PO <sub>4</sub> 3eqv               | 2.60E-04               | 1.10E-04 | 1.23E-05 | -5.32E-05 | 4.33E-05              | 8.13E-05 | 4.86E-04 | 1.04E-04 |  |
| ADPM      | kg Sb-eqv                             | 1.34E-06               | 6.93E-08 | 1.32E-08 | -3.84E-07 | 2.23E-07              | 4.32E-08 | 1.98E-07 | 5.14E-08 |  |
| ADPE      | MJ                                    | 7.43E+00               | 8.02E-01 | 2.50E-01 | -4.05E-01 | 1.24E+00              | 7.20E-01 | 3.74E+00 | 4.23E-01 |  |

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

6/9

| Resource ( | Resource use   |          |          |           |          |          |  |  |   |  |  |  |
|------------|----------------|----------|----------|-----------|----------|----------|--|--|---|--|--|--|
| Parameter  | Unit           | A1-A3    | A4       | A5        | B1-B7    | C1       |  |  |   |  |  |  |
| RPEE       | MJ             | 1.36E+01 | 4.04E-01 | 3.05E+00  | 0.00E+00 | 1.37E-03 |  |  |   |  |  |  |
| RPEM       | MJ             | 7.81E+00 | 0.00E+00 | -1.06E+00 | 0.00E+00 | 0.00E+00 |  |  |   |  |  |  |
| TPE        | MJ             | 2.14E+01 | 4.04E-01 | 2.00E+00  | 0.00E+00 | 1.37E-03 |  |  |   |  |  |  |
| NRPE       | MJ             | 5.30E+01 | 6.44E+00 | 4.38E+00  | 0.00E+00 | 1.82E-04 |  |  | ı |  |  |  |
| NRPM       | MJ             | 3.09E-01 | 0.00E+00 | 7.32E-01  | 0.00E+00 | 0.00E+00 |  |  |   |  |  |  |
| TRPE       | MJ             | 5.33E+01 | 6.44E+00 | 5.11E+00  | 0.00E+00 | 1.82E-04 |  |  |   |  |  |  |
| SM         | kg             | 9.87E+00 | 0.00E+00 | 4.93E-01  | 0.00E+00 | 0.00E+00 |  |  |   |  |  |  |
| RSF        | MJ             | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00 |  |  |   |  |  |  |
| NRSF       | MJ             | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00 |  |  |   |  |  |  |
| W          | m <sup>3</sup> | 5.15E-02 | 2.46E-03 | 4.66E-03  | 0.00E+00 | 7.51E-08 |  |  |   |  |  |  |

| Resource ( | use            | Recycling scenario |           |          |           | Landfill scenario |          |          |          |  |
|------------|----------------|--------------------|-----------|----------|-----------|-------------------|----------|----------|----------|--|
| Parameter  | Unit           | C2                 | C3        | C4       | D         | C2                | C3       | C4       | D        |  |
| RPEE       | MJ             | 8.08E-02           | 6.46E+00  | 8.20E-03 | -4.01E+00 | 1.35E-02          | 1.93E-01 | 1.25E-01 | 1.70E-02 |  |
| RPEM       | MJ             | 0.00E+00           | -6.26E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00          | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |
| TPE        | MJ             | 8.08E-02           | 1.99E-01  | 8.20E-03 | -4.01E+00 | 1.35E-02          | 1.93E-01 | 1.25E-01 | 1.70E-02 |  |
| NRPE       | MJ             | 7.56E+00           | 8.30E-01  | 2.66E-01 | -5.90E-01 | 1.26E+00          | 7.38E-01 | 3.99E+00 | 4.47E-01 |  |
| NRPM       | MJ             | 0.00E+00           | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00          | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |
| TRPE       | MJ             | 7.56E+00           | 8.30E-01  | 2.66E-01 | -5.90E-01 | 1.26E+00          | 7.38E-01 | 3.99E+00 | 4.47E-01 |  |
| SM         | kg             | 0.00E+00           | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00          | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |
| RSF        | MJ             | 0.00E+00           | 0.00E+00  | 0.00E+00 | -1.17E-04 | 0.00E+00          | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |
| NRSF       | MJ             | 0.00E+00           | 0.00E+00  | 0.00E+00 | -1.20E-01 | 0.00E+00          | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |
| W          | m <sup>3</sup> | 1.44E-03           | 5.29E-04  | 2.51E-04 | -3.00E-04 | 2.40E-04          | 7.57E-05 | 3.73E-03 | 8.19E-05 |  |

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

| End of life | End of life - Waste |          |          |          |          |          |  |  |  |  |  |
|-------------|---------------------|----------|----------|----------|----------|----------|--|--|--|--|--|
| Parameter   | Unit                | A1-A3    | A4       | A5       | B1-B7    | C1       |  |  |  |  |  |
| HW          | kg                  | 6.44E-05 | 5.63E-06 | 5.97E-05 | 0.00E+00 | 2.36E-10 |  |  |  |  |  |
| NHW         | kg                  | 9.41E-01 | 6.13E-01 | 5.03E-01 | 0.00E+00 | 1.23E-05 |  |  |  |  |  |
| RW          | kg                  | 1.00E-04 | 4.18E-05 | 1.02E-05 | 0.00E+00 | 1.34E-09 |  |  |  |  |  |

| End of life - Waste |    | Recycling scenario |          |          |           | Landfill scenario |          |          |          |  |
|---------------------|----|--------------------|----------|----------|-----------|-------------------|----------|----------|----------|--|
| Parameter Unit      |    | C2                 | C3       | C4       | D         | C2                | C3       | C4       | D        |  |
| HW                  | kg | 4.76E-06           | 6.34E-07 | 2.17E-07 | -7.76E-07 | 7.94E-07          | 3.86E-07 | 3.29E-06 | 4.83E-07 |  |
| NHW                 | kg | 5.19E-01           | 1.15E-02 | 8.74E-01 | -3.30E-02 | 8.65E-02          | 5.48E-03 | 1.30E+01 | 9.05E-03 |  |
| RW                  | kg | 5.11E-05           | 5.43E-06 | 1.60E-06 | -3.66E-06 | 8.51E-06          | 5.11E-06 | 2.38E-05 | 2.55E-06 |  |

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

| End of life | End of life - Output flow |          |          |          |          |          |  |  |  |  |  |  |
|-------------|---------------------------|----------|----------|----------|----------|----------|--|--|--|--|--|--|
| Parameter   | Unit                      | A1-A3    | A4       | A5       | B1-B7    | C1       |  |  |  |  |  |  |
| CR          | kg                        | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |  |  |  |
| MR          | kg                        | 1.50E-02 | 0.00E+00 | 2.93E-01 | 0.00E+00 | 0.00E+00 |  |  |  |  |  |  |
| MER         | kg                        | 3.02E-05 | 0.00E+00 | 3.23E-03 | 0.00E+00 | 0.00E+00 |  |  |  |  |  |  |
| EEE         | MJ                        | 1.32E-02 | 0.00E+00 | 1.47E-02 | 0.00E+00 | 0.00E+00 |  |  |  |  |  |  |
| ETE         | MJ                        | 1.39E-01 | 0.00E+00 | 1.04E-01 | 0.00E+00 | 0.00E+00 |  |  |  |  |  |  |

| End of life | - Output flow | Recycling scenario |          |          |           | Landfill scenario |          |          |          |
|-------------|---------------|--------------------|----------|----------|-----------|-------------------|----------|----------|----------|
| Parameter   | Unit          | C2                 | C3       | C4       | D         | C2 C3 C4          |          |          | D        |
| CR          | kg            | 0.00E+00           | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00          | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| MR          | kg            | 0.00E+00           | 1.16E+01 | 0.00E+00 | 7.69E-01  | 0.00E+00          | 0.00E+00 | 0.00E+00 | 1.23E+01 |
| MER         | kg            | 0.00E+00           | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00          | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| EEE         | MJ            | 0.00E+00           | 5.63E-01 | 0.00E+00 | -5.77E-01 | 0.00E+00          | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| ETE         | MJ            | 0.00E+00           | 3.87E+00 | 0.00E+00 | -3.97E+00 | 0.00E+00          | 0.00E+00 | 0.00E+00 | 0.00E+00 |

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example:  $9.0 \text{ E}-03 = 9.0 \cdot 10^{-3} = 0.009$ 



## **Additional Norwegian requirements**

## Greenhous gas emission from the use of electricity in the manufacturing phase

as hazardous waste (Avfallsforskiften, Annex III), see table.

National consumption mix with import on low voltage (production of transmission lines, in addition to direct emissions and losses in grid) are applied electricity for the manufacturing prosess (A3).

| Data source           | Amount | Unit                     |
|-----------------------|--------|--------------------------|
| Ecoinvent v3.5 (2018) | 31.7   | CO <sub>2</sub> -eqv/kWh |

## **Dangerous substances**

| ✓ | The product contains no substances given by the REACH Candidate list or the Norwegian priority list                                              |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------|
|   | The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1 % by weight.             |
|   | The product contain dangerous substances, more then 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table. |
|   | The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified                   |

#### **Indoor environment**

Emissions to indoor air are tested by RISE in 2020 and evaluated according to EN 16516. The summary of the test results are listed below for Norgips Brann Type DF.

| TVOC                  | <10  | μg/m²h |
|-----------------------|------|--------|
| Sum carcinogenic VOCs | <1   | μg/m²h |
| Sum VOC with LCI      | <2   | μg/m²h |
| Sum VOC without LCI   | <2   | μg/m²h |
| Sum VVOC              | 3    | μg/m²h |
| Formaldehyde          | 3    | μg/m²h |
| Sum SVOC              | <2   | μg/m²h |
| R= Sum Ci/LCli        | 0.07 |        |

## **Carbon footprint**

In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator for GWP has been sub-divided into the following:

GWP-IOBC Climate impacts calculated according to the principle of instantanious oxidation

GWP-BC Climate impacts from the net uptake and emission of biogenic carbon from each module.

| Climate im | Climate impacts         |           |          |          |          |          |  |  |  |  |  |
|------------|-------------------------|-----------|----------|----------|----------|----------|--|--|--|--|--|
| Parameter  | Unit                    | A1-A3     | A4       | A5       | B1-B7    | C1       |  |  |  |  |  |
| GWP-IOBC   | kg CO <sub>2</sub> -eqv | 3.27E+00  | 3.72E-01 | 3.16E-01 | 0.00E+00 | 1.07E-05 |  |  |  |  |  |
| GWP-BC     | kg CO <sub>2</sub> -eqv | -7.63E-01 | 0.00E+00 | 1.38E-01 | 0.00E+00 | 0.00E+00 |  |  |  |  |  |
| GWP        | kg CO <sub>2</sub> -eqv | 2.51E+00  | 3.72E-01 | 4.53E-01 | 0.00E+00 | 1.07E-05 |  |  |  |  |  |

| Climate impacts |                         | Recycling scenario |          |          |           | Landfill scenario |          |          |          |
|-----------------|-------------------------|--------------------|----------|----------|-----------|-------------------|----------|----------|----------|
| Parameter       | Unit                    | C2                 | C3       | C4       | D         | C2                | C3       | C4       | D        |
| GWP-IOBC        | kg CO <sub>2</sub> -eqv | 4.83E-01           | 5.92E-02 | 1.12E-02 | -3.79E-02 | 8.05E-02          | 5.03E-02 | 6.43E-01 | 3.38E-02 |
| GWP-BC          | kg CO <sub>2</sub> -eqv | 0.00E+00           | 6.25E-01 | 0.00E+00 | 0.00E+00  | 0.00E+00          | 0.00E+00 | 6.25E-01 | 0.00E+00 |
| GWP             | kg CO <sub>2</sub> -eqv | 4.83E-01           | 6.84E-01 | 1.12E-02 | -3.79E-02 | 8.05E-02          | 5.03E-02 | 1.27E+00 | 3.38E-02 |

8/9



| Bibliography             |                                                                                                                                             |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| ISO 14025:2010           | Environmental labels and declarations - Type III environmental declarations - Principles and procedures                                     |
| ISO 14044:2006           | Environmental management - Life cycle assessment - Requirements and guidelines                                                              |
| EN 15804:2012+A1:2013    | Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products     |
| ISO 21930:2007           | Sustainability in building construction - Environmental declaration of building products                                                    |
| EN 16485:2014            | Round and sawn timber - Environmental Product Declaration - Product category rules for wood and wood-based products for use in construction |
| EN 16516                 | Construction products: Assessment of release of dangerous substances - Determination of emissions into indoor air                           |
| NPCR010 V3.0             | Product category rules for building boards. April 2019. EPD-Norge.                                                                          |
| Ecoinvent v3.5           | Swiss Centre of Life Cycle Inventories. www.ecoinvent.ch                                                                                    |
| EN 520                   | Gypsum plasterboards - Definitions, requirements and test methods                                                                           |
| Valente & Tellnes (2020) | LCA-report for Norgips AS. Report OR.06.20 from Østfoldforskning, Kråkerøy, Norway.                                                         |

| and norge no                 | Program operator                    | Phone:  | +47 97722020             |
|------------------------------|-------------------------------------|---------|--------------------------|
| epd-norge.no                 | The Norwegian EPD Foundation        |         |                          |
| The Norwegian EPD Foundation | Post Box 5250 Majorstuen, 0303 Oslo | e-mail: | post@epd-norge.no        |
|                              | Norway                              | web     | www.epd-norge.no         |
| and nargo no                 | Publisher                           | Phone:  | +47 97722020             |
| epd-norge.no                 | The Norwegian EPD Foundation        |         |                          |
| The Norwegian EPD Foundation | Post Box 5250 Majorstuen, 0303 Oslo | e-mail: | post@epd-norge.no        |
|                              | Norway                              | web     | www.epd-norge.no         |
|                              | Owner of the declaration            | Phone:  | +47 33 78 48 00          |
| NORGIPS                      | Norgips Norge AS                    | Fax     | -                        |
| NORGIFS                      | Postboks 655 Strømsø                | e-mail: | norgips@norgips.no       |
|                              | Norway                              | web     | www.norgips.no           |
|                              | Author of the Life Cycle Assessment | Phone:  | +47 69 35 11 00          |
| Ostfoldforskning             | Clara Valente & Lars G. F. Tellnes  | Fax     | +47 69 34 24 94          |
| Ustroidio skriling           | Ostfold Research                    | e-mail: | post@ostfoldforskning.no |
| O                            | Stadion 4, 1671 Kråkerøy, Norway    | web     | www.ostfoldforskning.no  |